

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 585 (1999) 315-325

Journal ofOrgano metallic Chemistry

Chirale Bisphosphane IX. Kationische Rhodium(I)-Komplexe mit (1S,2S)-Cyclopentan-1,2-diyl-bis(dialkylphosphan)-Liganden, [(1S,2S)-C₅H₈(PR₂)₂Rh(1,5-COD)]O₃SCF₃: Synthesen, Strukturen und katalytische Anwendungen^{$\pm,\pm\pm$}

Lutz Dahlenburg *, Volker Kurth

Institut für Anorganische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Eingegangen am 24 Februar 1999; eingegangen in revidierter Form am 20 April 1999

Abstract

Radical-initiated P–H addition of $(1S,2S)-C_5H_8(PH_2)_2$ (1) to allyl alcohol or 1,4-pentadiene produced the peralkylated chiral P₂ ligands $(1S,2S)-C_5H_8(P(C_3H_6OH)_2)_2$ (6) and $(1S,2S)-C_5H_8(PC_5H_{10}-cyclo)_2$ (7), respectively. Further *P*-alkylated bisphosphanes of the type $(1S,2S)-C_5H_8(PR_2)_2$, where PR₂ = P(C₄H₉-n)_2 (5) and P(C₆H₁₁-cyclo)₂ (8), were obtained from $(1S,2S)-C_5H_8(PCl_2)_2$ (2) by Grignard substitution. Combination of $(1S,2S)-C_5H_8(PCl_3)C_8H_{15}$ -cyclo)₂ (4) with CH₃MgBr or of $(1S,2S)-C_5H_8\{P(H)C_8H_{15}$ -cyclo)₂ (3) with *n*-C₄H₉Li and CH₃I afforded $(1S,2S)-C_5H_8\{P(CH_3)C_8H_{15}$ -cyclo)₂ (9) as diastereomeric mixtures containing the S_P, S_P, R_P, R_P , and R_P, S_P stereoisomers **9a**-**c** in different proportions. The optically active chelate ligands **5**-**9** reacted with [Rh(1,5-COD)_2]O_3SCF_3 to give cationic rhodium(I) complexes, $[(1S,2S)-C_5H_8(PR_2)_2Rh(1,5-COD)]O_3SCF_3$ [PR₂ = P(C₄H₉-n)₂ (10), P(C₃H₆OH)₂ (11), PC₅H₁₀-cyclo (12), P(C₆H₁₁-cyclo)₂ (13) und P(CH₃)C₈H₁₅-cyclo (14)], of which **10**, **13**, and the R_P, R_P diastereomer [(1S,2S)-C₅H₈{P(CH_3)C_8H_{15}-cyclo-(R)}_2Rh(1,5-COD)]O_3SCF_3 (14a) were characterized by X-ray structure analysis. Use of these new complexes as catalysts in the homogeneous enantioselective hydrogenation of α -acetamidocinnamic acid to *N*-acetylphenylalanine provided optical yields varying between 6% and 77% *e.e.* The significant differences in the enantioselectivities observed with [(1S,2S)-C₅H₈{P(CH₃)C₈H₁₅-cyclo-(R)}₂Rh(1,5-COD)]O_3SCF₃ (14a) (33% *e.e.* of *S*-(+)-*N*-acetylphenylalanine) and [(1S,2S)-C₅H₈{P(CH₃)C₈H₁₅-cyclo-(S)}₂Rh(1,5-COD)]O_3SCF₃ (14b) (77% *e.e.* of *R*-(-)-*N*-acetylphenylalanine) are contingent upon the spatial orientation of the bulky cyclooctyl groups in the two diastereomeric cations.

Zusammenfassung

Die radikalische P-H-Addition von (1S,2S)-C₅H₈(PH₂)₂ (1) an Allylalkohol oder 1,4-Pentadien führte zu den peralkylierten chiralen P₂-Liganden (1S,2S)-C₅H₈(P(C₃H₆OH)₂)₂ (6) und (1S,2S)-C₅H₈(PC₅H₁₀-*cyclo*)₂ (7). Weitere *P*-alkylierte Bisphosphane des Typs (1S,2S)-C₅H₈(PR₂)₂ mit PR₂ = P(C₄H₉-*n*)₂ (5) und P(C₆H₁₁-*cyclo*)₂ (8) wurden aus (1S,2S)-C₅H₈(PCl₂)₂ (2) durch Grignard-Substitution erhalten. Umsetzungen von (1S,2S)-C₅H₈{P(Cl)C₈H₁₅-*cyclo*}₂ (4) mit CH₃MgBr oder von (1S,2S)-C₅H₈{P(H)C₈H₁₅-*cyclo*}₂ (3) mit *n*-C₄H₉Li und CH₃I lieferten (1S,2S)-C₅H₈{P(CH₃)C₈H₁₅-*cyclo*}₂ (9) als Diastereomerengemische, welche die S_p, S_p.-, R_p, R_p.- and R_p, S_p-Stereoisomere **9a**-c in unterschiedlichen Anteilen enthielten. Die optisch aktiven Chelatliganden **5**-**9** reagierten mit [Rh(1,5-COD)₂]O₃SCF₃ unter Bildung kationischer Rhodium(I)-Komplexe, [(1S,2S)-C₅H₈(PR₂)₂Rh(1,5-COD)]O₃SCF₃ [PR₂ = P(C₄H₉-*n*)₂ (10), P(C₃H₆OH)₂ (11), PC₅H₁₀-*cyclo* (12), P(C₆H₁₁-*cyclo*)₂ (13) und P(CH₃)C₈H₁₅-*cyclo* (14)], von denen **10**, **13** und das R_p, R_p-Diastereomer [(1S,2S)-C₅H₈{P(CH₃)C₈H₁₅-*cyclo*-(R)}₂ Rh(1,5-COD)]O₃SCF₃ (14a) durch Röntgenstrukturanalyse charakterisiert wurden. Die Verwendung dieser neuen Komplexe als Kataly-satoren der homogenen enantioselektiven Hydrierung von α -Acetamidozimtsäure zu *N*-Acetylphenylalanin ergab optisch

^{*} Herrn Professor Dr Helmut Werner zum 65 Geburtstag gewidmet.

^{☆☆} Teil VIII: Lit [1].

^{*} Corresponding author. Tel.: +49-9131-85-27353; fax: +49-9131-85-27387.

E-mail address: dahlbg@anorganik.chemie.uni-erlangen.de (L. Dahlenburg)

Ausbeuten zwischen 6% and 77% *e.e.* Die deutlich unterschiedlichen Enantioselektivitäten, die mit $[(1S,2S)-C_5H_8{P(CH_3)C_8H_{15}-cyclo-(R)}_2Rh(1,5-COD)]O_3SCF_3$ (14a) (33% *e.e.* an S-(+)-N-Acetylphenylalanin) und $[(1S,2S)-C_5H_8{P(CH_3)C_8H_{15}-cyclo-(S)}_2Rh(1,5-COD)]O_3SCF_3$ (14b) (77% *e.e.* an R-(-)-N-Acetylphenylalanin) erzielt wurden, sind durch die räumliche Ausrichtung der sperrigen Cyclooctylgruppen in den zwei diastereomeren Kationen bedingt. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Chirality; P ligands; Rhodium; X-ray structure analysis; Hydrogenation

1. Einleitung

Rhodium(I)-Komplexe optisch reiner chiraler Chelatphosphane spielen in der enantioselektiven Synthese als effiziente Homogenkatalysatoren eine herausragende Rolle. Bei der Überzahl der gebräuchlichen P2-Liganden ruht die Stereoinformation in einem C2-chiralen Kohlenstoffgerüst und wird von dort über Diarylphosphanyl-Endgruppen auf das Substrat übertragen. Dieses feste Substitutionsmuster der Phosphoratome, das einer syste-Untersuchung von Struktur-Funktions matischen beziehungen bei enantioselektiv verlaufenden homogenkatalytischen Reaktionen entgegensteht, ist synthesebedingt: So lassen sich z.B. terminale -PR₂-Substituenten mit aliphatischen oder cycloaliphatischen Resten R auf dem konventionellen Wege des Austauschs nucleofuger Abgangsgruppen gegen Dialkylphosphid wegen der dann in den Vordergrund tretenden konkurrierenden Eliminierungsprozesse nicht oder nur in sehr begrenztem Rahmen einführen [2,3].

Vor diesem Hintergrund hatten wir uns die Darstellung solcher optisch aktiver Chelatphosphane zum Ziel gesetzt, welche von einer gemeinsamen gerüstchiralen Vorstufe aus eine vielfältige Variation ihrer endständigen -PR₂-Einheiten erlauben, um an ihnen zu prüfen, wie elektronische und sterische Veränderungen der Koordinationssphären homogenkatalytisch wirksamer Komplexe deren Aktivität und Selektivität beeinflussen. Als dafür geeignete Ausgangsverbindungen haben sich das in zwei vorausgegangenen Arbeiten beschriebene enantiomerenreine Cyclopentan-1,2-diyl-bis(phosphan), (1S,2S)-C₅H₈(PH₂)₂ (1) [4], und das daraus durch Oxidation mit Bis(trichlormethyl)carbonat ('Triphosgen') zugängliche Bis(phosphonigsäuredichlorid) (1S,2S)- $C_5H_8(PCl_2)_2$ (2) [5] erwiesen. Aus diesen können neben optisch aktiven Derivaten (1S, 2S)-C₅H₈(PR₂)₂ mit P-Nund P-O-verknüpften Resten R [1,5] auf einfachem Wege auch solche mit P-C-gebundenen aliphatischen und cycloaliphatischen Substituenten erhalten werden, deren Rhodium(I)-Komplexe den Gegenstand der vorliegenden Arbeit bilden.

2. Ergebnisse und Diskussion

2.1. Synthese der P-alkylierten Chelatphosphane $(1S,2S)-C_5H_8(PR_2)_2$

Für die Untersuchungen wurden die in Schema 1 zusammengestellten P_2 -Liganden verwendet. Ihre Synthe-

sen erfolgten auf einem der vier nachstehend skizzierten Wege:

(I) Unter Radikalbedingungen durchgeführte P–H-Additionsreaktionen des bis(primären) Phosphans 1 an die >C=C<-Bindungen von Allylalkohol oder 1,4-Pentadien ergaben das auch in wässriger Phase lösliche 3-Hydroxypropyl-Derivat (1S,2S)-C₅H₈{P(C₃H₆OH)₂}₂ (**6**) sowie den Bis(phosphorinan)-Liganden (1S,2S)-C₅H₈(PC₅H₁₀-*cyclo*)₂ (**7**).

(II) Die Chelatphosphane (1S,2S)- $C_5H_8{P(C_4H_9-n)_2}_2$ (5) und (1S,2S)- $C_5H_8{P(C_6H_{11}-cyclo)_2}_2$ (8) wurden ausgehend vom Bis(phosphonigsäuredichlorid) 2 durch Grignard-Substitution erhalten.

(III) Metallierung der P–H-Bindungen des aus 1 und Cycloocten zugänglichen bis(sekundären) Phosphans (1*S*,2*S*)-C₅H₈{P(H)C₈H₁₅-*cyclo*}₂ (**3**) mit *n*-C₄H₉Li und nachfolgende Alkylierung des so gebildeten Dilithioderivats (1*S*,2*S*)-C₅H₈{P(Li)C₈H₁₅-*cyclo*}₂ mit Methyliodid führten— wie jüngst beschrieben [6]—zu (1*S*,2*S*)-C₅H₈{P(CH₃)C₈H₁₅-*cyclo*}₂ (**9**) als Gemisch dreier Diastereomere mit den P-Konfigurationen S_P, S_P , **9a** (72%), R_P, R_P , **9b** (4%), und R_P, S_P , **9c** (24%).

Schema 1.

(IV) Der P₂-Ligand 9 liess sich auch durch Grignard-Reaktion zwischen CH₃MgBr und (1S, 2S)- $C_5H_8{P(Cl)C_8H_{15}-cyclo}_2$ (4) erschliessen, wobei das Bis(phosphinigsäurechlorid) 4 zuvor durch Chlorierung von 3 mit Triphosgen synthetisiert wurde [7]. Bemerkenswerterweise kehrt diese Reaktionsfolge das Verhältnis der C_2 -symmetrischen $S_P, S_{P'}$ - und $R_P, R_{P'}$ -Epimere von 9 aus bislang unbekannten Gründen um, denn **9a** $[\delta({}^{31}P) = -11.82 \text{ (s)}]$ ist nunmehr mit nur 4% im Isomerengemisch vorhanden, während **9b** $[\delta(^{31}P) =$ -10.02 (s)] mit 61% vorliegt. Der Beitrag der $R_{\rm P}, S_{\rm P}$ -Form **9c** $[\delta(^{31}P) = -6.01, -14.04]$ (AB-System; ${}^{3}J(P_{A},P_{B}) = 6.2$ Hz)] zeigt mit 35% im Vergleich zu 24% für das aus (1S,2S)-C5H8{P(Li)C8H15-cyclo}2 abgeleitete Produkt demgegenüber nur wenig Änderung.

2.2. Synthese der Rhodium(I)-Komplexe [(1S,2S)-C₅H₈(PR₂)₂Rh(1,5-COD)]O₃SCF₃

Im Gegensatz zu der von uns kürzlich publizierten Darstellung der Bis(phosphonigsäurediester)- und Bis-(phosphonigsäurediamid)-Komplexe $[(1S,2S)-C_5H_8 (PX_2)_2Rh(1,5-COD)]O_3SCF_3$ (X = OR, NR₂), die aufgrund der in diesen Derivaten hohen Labilität des Cyclooctadien-Liganden Schwierigkeiten bereitete [1], erwies sich die Synthese der von den P-alkylierten Chelatphosphanen 5-9 koordinierten Titelverbindungen $[(1S,2S)-C_5H_8(PR_2)_2Rh(1,5-COD)]O_3SCF_3$ mit $PR_2 = P(C_4H_9-n)_2$ (10), $P(C_3H_6OH)_2$ (11), PC_5H_{10} -cyclo (12), $P(C_6H_{11}-cyclo)_2$ (13) und $P(CH_3)C_8H_{15}-cyclo$ (14) als unproblematisch: Umsetzungen zwischen [Rh(1,5-COD)₂]O₃SCF₃ und geringen Überschüssen der Liganden 5, 8 und 9 in THF lieferten die Komplexe 10, 13 und 14 als weitgehend luftstabile orange Feststoffe, während 11 und 12 unter ähnlichen Bedingungen als spektroskopisch reine, aber nicht kristallisierende Öle erhalten wurden.

Wurde für die Synthese von $[(1S,2S)-C_5H_8]$ P- $(CH_3)C_8H_{15}-cyclo\}_2Rh(1,5-COD)]O_3SCF_3$ (14) das aus $(1S,2S)-C_5H_8{P(Li)C_8H_{15}-cyclo}_2/CH_3I$ erhaltene Diastereomerengemisch des Chelatphosphans 9 verwendet, in welchem—wie unter 2.1. ausgeführt—die $S_{\rm P}, S_{\rm P}$ konfigurierte Komponente 9a stark überwiegt, so erhielt man die stereoisomeren Komplexe 14 mit einer gegenüber dem freien Liganden nur wenig veränderter Isomerenverteilung, nämlich 58% **14a** $[R_{\rm P}, R_{\rm P}; \delta(^{31}{\rm P}) =$ 30.30 (d, ${}^{1}J(Rh,P) = 144.5$ Hz)] neben 11% **14b** [S_P,S_P; $\delta({}^{31}\text{P}) = 28.95 \text{ (d, } {}^{1}J(\text{Rh},\text{P}) = 146.1 \text{ Hz}) \text{] und } 31\% \text{ 14c}$ $\delta(^{31}\mathrm{P}) = 32.14,$ $[R_{\mathbf{p}}, S_{\mathbf{p}'};$ 28.45 (ABX-System, ${}^{1}J(\text{Rh},\text{P}_{\text{A}}) = 145.2, {}^{1}J(\text{Rh},\text{P}_{\text{B}}) = 144.6, {}^{(2+3)}J(\text{P}_{\text{A}},\text{P}_{\text{B}}) =$ 29.9 Hz)]. Durch Fällen der Reaktionslösung mit Diethylether gelang es, das durch Koordination der $S_{\rm P}, S_{\rm P}$ -Form **9a** von (1*S*, 2*S*)-C₅H₈{P(CH₃)C₈H₁₅-*cyc* $lo\}_2$ and en $[Rh(1,5-COD)]^+$ -Rumpf gebildete R_P, R_P konfigurierte Komplexisomer 14a, $[(1S,2S)-C_5H_8 \{P(CH_3)C_8H_{15}-cyclo-(R)\}_2Rh(1,5-COD)]O_3SCF_3$, diastereomerenrein zu isolieren und durch Röntgenstrukturanalyse (vgl. 2.3.) als solches zu charakterisieren. Ging man zur Darstellung des Komplexes 14 von dem aus (1S,2S)-C₅H₈{P(Cl)C₈H₁₅-*cyclo*}, und Methylmagnesiumbromid gewonnenen Isomerengemisch 9a-c mit darin vorherrschender $R_{\rm P}, P_{\rm P}$ -Komponente 9b aus, liess sich für das gebildete Produkt die folgende Diastereomerenverteilung nachweisen: 14a 5%, 14b 62%, 14c 33%. Auch in diesem Fall entspricht also das Verhältnis der erhaltene Komplexisomere 14a-c annähernd dem der epimeren Formen 9a-c des unkoordinierten Liganden (vgl. 2.1.) und zeigt dadurch an, dass die Komplexbildungsreaktion ähnlich wie bei der Darstellung der Ni-, Pd- und Pt-Derivate $[(1S,2S)-C_5H_8]P(CH_3)C_8H_{15}$ cyclo₂MX₂ (X = Cl, I) [6] ohne merkliche Diastereoselektivität erfolgt. Bei chromatographischer Aufarbeitung des Isomerengemischs an Florisil/Aceton blieb das nicht C_2 -symmetrische R_P, S_P -Isomer 14c auf der stationären Phase adsorbiert, während sich die C_2 symmetrischen Formen 14a und 14b bis zu einer Anreicherung des $S_{\rm P}, S_{\rm P}$ -Diastereomers [(1S,2S)-C₅H₈{P- $(CH_3)C_8H_{15}-cyclo-(S)$ }2Rh(1,5-COD)]O_3SCF_3 (14b) im Eluat auf 92% voneinander trennten.

2.3. Röntgenstrukturanalysen

Von den Komplexen 10, 13 und 14a liessen sich Einkristalle züchten, die zur Durchführung von Röntgeeignet genstrukturanalysen waren. Alle drei Verbindungen gehören der monoklinen nichtzentrosymmetrischen Raumgruppe P21 an, wobei die asymmetrische Einheit von 10 und 13 mit zwei unabhängigen Molekülen besetzt und Z = 4 ist. In Abb. 1–3 sind Ansichten der jeweils erhaltenen Strukturmodelle wiedergegeben. In [(1S,2S)-C₅H₈{P(CH₃)C₈H₁₅-cyclo-(R)₂Rh(1,5-COD)]⁺(14a⁺) weist das Rhodiumatom die erwartete planare Koordinationsgeometrie auf, in welcher die Summe der vier Intra- und Interligand-cis-Bindungswinkel P(1)-Rh-P(2), P(1)-Rh-X, P(2)-Rh-X' und X-Rh-X' (X, X': Mittelpunkte der koordinierten >C=C<-Bindungen) von 360.0° nicht nennenswert differiert und der Diederwinkel ϕ zwischen den Normalen zu den durch die Fragmente RhP⁽¹⁾P⁽²⁾ und RhXX' definierten Flächen mit 1.4° nur geringfügig vom Idealwert 0° abweicht. Auch in den im Kristall vorliegenden Kationen $[(1S,2S)-C_5H_8]P(C_4H_9$ $n_{2}^{2} Rh(1,5-COD)^{+}(10^{+}-1 \text{ und } 10^{+}-2)$ ist die planare Koordinationsgeometrie nur marginal tetraedrisch verzerrt, wie aus den sich zu 360.5 und 360.7° ergänzenden cis-Bindungswinkeln sowie aus den 7.8 und .3° messenden RhP₂/RhXX'-Diederwinkeln folgt. Die vergleichsweise ausgeprägteste tetraedrische Verzerrung wird mit Diederwinkeln ϕ von 17.4 bzw. 21.5° an den beiden kristallographisch unabhängigen Komplexkationen von $[(1S,2S)-C_5H_8]P(C_6H_{11}-cy-$

Abb. 1. Strukturmodell einer der beiden kristallographisch unabhängigen Einheiten des Komplexes $[(1S,2S)-C_5H_8{P(C_4H_9$ $n_{2}^{2} Rh(1,5-COD) O_{3}SCF_{3},$ **10-**1. Ausgewählte interatomare Abstände (Å), Valenz- und Torsionswinkel (°): Rh(1)–C(1), 2.261(6); Rh(1)-C(2), 2.246(5); Rh(1)-C(5), 2.248(8); Rh(1)-C(6), 2.228(7); Rh(1)-P(1), 2.311(1); Rh(1)-P(2), 2.308(2). P(1)-Rh(1)-P(2), 84.47(7). P(1)-Rh(1)-P(2)-C(22), -90.2; P(1)-Rh(1)-P(2)-C(26), 144.1; P(2)-Rh(1)-P(1)-C(14), 114.5; P(2)-Rh(1)-P(1)-C(18), 122.8.-Entsprechende Abstände, Valenz- und Torsionswinkel im Kation 10⁺-2 (ohne Abbildung): Rh(2)-C(31), 2.253(6); Rh(2)-C(32), 2.241(6); Rh(2)-C(35), 2.251(11); Rh(2)-C(36), 2.243(8); Rh(2)-P(3), 2.313(2); Rh(2)-P(4), 2.303(2). P(3)-Rh(2)-P(4), 84.64(8). P(3)-Rh(2)-P(4)-C(52), -102.4; P(3)-Rh(2)-P(4)-C(56), 136.0; P(4)-Rh(2)-P(3)-C(44), 126.3; P(4)-Rh(2)-P(3)-C(48), -113.4.

 $clo_{2}_{2}Rh(1,5-COD)]^{+}(13^{+}-1 \text{ und } 13^{+}-2)$ beobachtet. Mit dieser Verzerrung wird dem grossen Raumbedarf der Cyclohexylsubstituenten Rechnung getragen, indem durch ein Herausdrehen der COD-Doppelbindungen aus der Koordinationsebene in Richtung auf die 'faceon' ausgerichteten äquatorialen C₆H₁₁-Ringe (s.u.) die sterische Wechselwirkung vermindert wird. Ähnliche Effekte treten auch an den 2,5-dimethylsubstituierten Bis(phospholan)-Komplexen [C₂H₄{P(CH(CH₃)CH₂)₂*cyclo*}₂Rh(1,5-COD)]SbF₆ und [*o*-C₆H₄{P(CH(CH₃)-CH₂)₂-*cyclo*}₂Rh(1,5-COD)]SbF₆ [8] sowie an weiteren, schon früher strukturell charakterisierten (1,5-Cyclooctadien)rhodium(I)-Derivaten sterisch anspruchsvoller chiraler Chelatphosphane [9–11] zutage.

In den von den P₂-Liganden aufgespannten Chelatringen weiten sich die P–Rh–P-Griffwinkel mit wachsendem sterischen Anspruch der Substituenten an den Phosphoratomen in der Reihe der Komplexe 14a⁺ ~ $10^+ < 13^+$ auf, zeigen mit Werten zwischen 84.3° und 86.2° aber eine insgesamt nur geringe Schwankungsbreite. Ähnliches gilt für die Längen der Rh–P-Bindungen, deren Mittelwerte sowohl in 14a⁺(2.311 Å) als auch in 10⁺-1 (2.310 Å) und 10⁺-2 (2.308 Å) nahe 2.310 Å liegen, wohingegen die gemittelten Metall–Phosphor-Abstände des ausschliesslich cyclohexylsubstituierten Derivats 13 auf 2.330 Å gedehnt sind.

Abb. 2. Strukturmodell einer der beiden kristallographisch unabhängigen Einheiten des Komplexes $[(1S,2S)-C_5H_8\{P(C_6H_{11}-cy-clo)_2\}_2Rh(1,5-COD)]O_3SCF_3$, **13**-1. Ausgewählte interatomare Abstände (Å) und Valenzwinkel (°): Rh(1)–C(1), 2.223(6); Rh(1)–C(2), 2.294(7); Rh(1)–C(5), 2.203(6); Rh(1)–C(6), 2.213(6); Rh(1)–P(1), 2.332(1); Rh(1)–P(2), 2.330(2). P(1)–Rh(1)–P(2), 84.91(5).—Entsprechende Abstände und Valenzwinkel im Kation **13**⁺-2 (ohne Abbildung): Rh(2)–C(39), 2.255(6); Rh(2)–C(40), 2.208(6); Rh(2)–C(43), 2.245(6); Rh(2)–C(44), 2.231(6); Rh(2)–P(4), 2.327(2); Rh(2)–P(4), 2.331(2). P(3)–Rh(2)–P(4), 86.16(5).

Frontansichten, die in Abb. 4 und 5 für die Kationen 13⁺-1 und 14a⁺schematisiert wiedergegeben sind, zeigen für die gewellten Chelatringe die auch schon an den Komplexen [(1S,2S)-C₅H₈{P(CH₃)C₈H₁₅-cyclo-(R)}₂MX₂] (M = Ni, Pd, Pt; X = Cl, I) und [(1S,2S)-C₅H₈{P(CH₃)C₈H₁₅-cyclo-(S)}₂NiCl₂] [6] beobachtete δ -Konformation an. Ähnlich wie in den $R_{\rm P}$, $R_{\rm P}$ -

Abb. 3. Strukturmodell des Komplexes $[(1S,2S)-C_5H_8{P(CH_3)(C_8H_{15}-cyclo-(R))_2Rh(1,5-COD)]O_3SCF_3$, **14a**. Ausgewählte interatomare Abstände (Å) und Valenzwinkel (°): Rh–C(1), 2.216(5); Rh–C(2), 2.226(5); Rh–C(5), 2.238(5); Rh–C(6), 2.227(6); Rh–P(1), 2.305(1); Rh–P(2), 2.316(1). P(1)–Rh–P(2), 84.33(3). Cyclooctyl-C-Atome C26/C26' und C29/C29' fehlgeordnet (Besetzungsfaktoren jeweils 0.5).

Abb. 4. Schematisierte Frontansicht des Kations $[(1S,2S)-C_5H_8{P(C_6H_{11}-cyclo)_2}_2Rh(1,5-COD)]^+$, **13**⁺-1. Ausgewählte Torsionswinkel (°): P(1)-Rh(1)-P(2)-C(26), 127.8; P(1)-Rh(1)-P(2)-C(32), -111.9; P(2)-Rh(1)-P(1)-C(14), -107.1; P(2)-Rh(1)-P(1)-C(20), 134.4. Entsprechende Torsionswinkel im Kation **13**⁺-2: P(3)-Rh(2)-P(4)-C(64), 123.1; P(3)-Rh(2)-P(4)-C(70), -113.0; P(4)-Rh(2)-P(3)-C(52), -112.6; P(4)-Rh(2)-P(3)-C(58), 123.8.

konfigurierten Ni-, Pd- und Pt-Derivaten des gemischt substituierten P_2 -Liganden **9** [6] besetzen auch im [(1*S*,-2*S*) - C_5H_8 {P(CH₃) C_8H_{15} - *cyclo* - (*R*)}₂Rh(1,5-COD)]⁺ -Diastereomer die Methylreste die zur Koordinationsebene axial ausgerichteten Positionen (Torsionswinkel: P(2)-Rh-P(1)-C(14), -99.8°; P(1)-Rh-P(2)-C(23), -106.7°), während die Cyclooctylringe äquatorial orientiert sind (Torsionswinkel: P(2)-Rh-P(1)-C(15), 137.1°; P(1)-Rh-P(2)-C(24), 131.5°). Abb. 4 verdeutlicht weiterhin, dass die äquatorial sitzenden Cyclohexylsubstituenten (Torsionswinkel P-Rh-P-CH<: 134.4 und 127.8° in **13**⁺-1 sowie 123.8 und 123.1° in **13**⁺-2) den verbleibenden zwei Haftstellen des Rhodiumatoms ähn-

Abb. 5. Schematisierte Frontansicht des Kations [(1S,2S)- $C_5H_8{P(CH_3)(C_8H_{15}-cyclo-(R)}_2Rh(1,5-COD)]^+$, **14a**⁺. Ausgewählte Torsionswinkel (°): P(1)-Rh-P(2)-C(23), -106.7; P(1)-Rh-P(2)-C(24), 131.5; P(2)-Rh-P(1)-C(14), -99.8; P(2)-Rh-P(1)-C(15), 137.1.

2.4. Katalytische Hydrierung von α -Acetamidozimtsäure

Zur Bewertung der Leistungsfähigkeit neuer enantioselektiver, in homogener Phase löslicher Hydrierkatalysatoren wird die Hydrierung von α -Acetamidozimtsäure zu N-Acetylphenylalanin als übliche Prüfreaktion herangezogen. Um die Eignung der hier beschriebenen Chelatphosphane **5–9** als Steuerliganden der Rh(I)-katalysierten 'asymmetrischen' Homogenhydrierung einschätzen zu können, wurden daher Lösungen der Komplexe **10–14** in Ethanol einer unter 1.1 bar Wasserstoff bei Raumtemperatur gerührten alkoholischen Lösung von α -Acetamidozimtsäure im Rhodium/Substrat-Verhältnis 1:75 zugesetzt.

Die in Schema 2 zusammengestellten Ergebnisse dieser Versuche geben zunächst zu erkennen, dass alle verwendeten Rhodiumverbindungen katalytische Aktivität besitzen und dass sich mit ihnen nach Reaktionszeiten von meist nur 1-2 h quantitative Umsätze erzielen lassen. Sie erweisen sich damit gegenüber ihren Analoga mit Bis(phosphonigsäurediester)und Bis(phosphonigsäurediamid)-Liganden, [(1S,2S)- $C_5H_8(PX_2)_2Rh(1,5-COD)]O_3SCF_3$ (X = OR, NR₂), mit denen unter vergleichbaren Bedingungen Hydriergrade nahe 100% erst nach 3-5 h erreicht wurden [1], als deutlich aktiver. Offensichtlich erleichtert die infolge der P-Alkylsubstitution erhöhte Ladungsdichte am zentralen Rhodiumatom die oxidative Addition des H₂beschleunigt Moleküls und somit den geschwindigkeitsbestimmenden Schritt der Hydrierreaktion. Diese gesteigerte katalytische Aktivität von 10-14 äussert sich auch darin, dass z.B. der cyclohexylsubstitu-Komplex 13 selbst bei einem ierte Rh/>C=C<-Verhältnis von 1:1000 das Substrat noch umsetzt, ohne dass die Hydriergeschwindigkeit merklich absinkt. Weiterhin unterscheiden sich die hier verwendeten Katalysatorkomplexe mit P-alkylierten Steuerliganden von den früher beschriebenen $C_5H_8{P(NR_2)_2}_2$ und $C_5H_8\{P(OR)_2\}_2$ -Derivaten dadurch, dass ihre Aktivität nach erfolgter Hydrierung erhalten bleibt, während sich letztere nach vollendeter H2-Aufnahme durch das Substrat unter Niederschlagsbildung zersetzen [1]. In Schema 2 ist dies für das Derivat 14a, [(1S,2S)- $C_{5}H_{8}{P(CH_{3})C_{8}H_{15}-cyclo-(R)}_{2}Rh(1,5-COD)]O_{3}SCF_{3}$ aufgezeigt, welches nach abgeschlossener Umsetzung der vorgelegten α-Acetamidozimtsäure bei erneuter

Schema 2.

Zugabe des Substrats katalytisch weiterhin aktiv ist und somit wiederverwendet werden kann.

Die mit dem $R_{\rm P}, R_{\rm P}$ -konfigurierten Diastereomer 14a erreichte optische Ausbeute beträgt 33% an S-(+)-N-Acetylphenylalanin. Mit dem $S_{\rm P}, S_{\rm P}$ -stereoisomeren Komplex 14b wurde demgegenüber ein Enantiomerenüberschuss von 77% R-(-)-N-Acetylphenylalanin erzielt. Dabei ist zu berücksichtigen, dass der eingesetzte Katalysator 14b herstellungsbedingt noch etwa 8% an 14a enthielt, so dass sich der mit diastereomerenreinem 14b erreichbare e.e.-Wert auf etwa 83% belaufen dürfte. Komplex 14b, mit axialen Cyclooctylgruppen, zeigt damit eine erheblich ausgeprägtere Enantioselektivität als sein Stereoisomer 14a mit axialen Methylgruppen. Es bleibt aber offen, ob die Liganden von 14a und 14b als 'matched system' oder 'mismatched pair' [13,14] in dem Sinne zu bezeichnen sind, dass sich Gerüstchiralität und Phosphorasymmetrie in ihrer Auswirkung auf die Enantioselektivität des Katalysatorkomplexes bei 14a teilweise aufheben, bei 14b aber verstärken. Diese Ungewissheit folgt daraus, dass die Katalysatoren 10-13, deren Liganden ausschliesslich gerüstchiral sind und mit Hinblick auf ihre Kohlenstoffgerüste stets S,S-

konfiguriert vorliegen, das Hydrierprodukt N-Acetylphenylalanin sowohl in der R-(-)-Form (10-12) als auch als S(+)-Enantiomer (13) ergeben. Dies bedeutet, dass sich der Einfluss des Gerüsts auf den Verlauf der Hydrierreaktion nicht festlegen lässt, so dass die Bezeichnungen 'matched' oder 'mismatched' hier völlig spekulativ bleiben. Die beobachteten unterschiedlichen stereochemischen Induktionen der Katalysatorkomplexe 10-12 einerseits und 13 sind auf den ersten Blick zwar verblüffend, haben in der Literatur aber durchaus Präzedenz: Auch $[\{(R,R)\text{-}DIOP\}Rh(1,5\text{-}COD)]^+$ begünstigt die Hydrierung des α-Acetamidozimtsäure-Moleküls zu R(-)-N-Acetylphenylalanin, während der analoge (R,R)-PAMPOP-Komplex, bei welchem am sonst gleichen Katalysatorrumpf lediglich die Phenylsubstituenten des DIOP-Liganden durch 2-Methoxyphenylreste ersetzt sind. die Bildung des Hydrierprodukts in der S-(+)-Konfiguration induziert [14]. Betrachtet man die mit Hilfe der Diastereomere 14a und 14b erreichten optischen Ausbeuten im wesentlichen als Ausdruck der unterschiedlichen Phosphorkonfigurationen in diesen Verbindungen, so kann man das sehr anschauliche Modell der räumlichen Abschirmung diagonal angeordneter Koordinationsquadranten [15] zur Deutung der beobachteten Enantioselektivitäten heranziehen: In 14a blockieren die im Vergleich zum Methylrest sterisch anspruchsvolleren äquatorialen Cyclooctylsubstituenten (Abb. 5) vor allem die Quadranten 'unten links' und 'oben rechts' (Schema 2, Fussnote^{a)}), während bei **14b** infolge der umgekehrten P-Konfiguration die Cycloalkylgruppen nunmehr axial ausgerichtet sind und dadurch die Quadranten 'oben links' und 'unten rechts' abschirmen (Schema 2, Fussnote ^{b)}). Diesen unterschiedlichen Abschottungen einander diagonal gegenüberliegender Teile der Koordinationssphären beider Komplexe entspricht in Übereinstimmung mit Befunden anderer [8,15] die Bildung des S-konfigurierten Hydrierprodukts bei Einsatz des Katalysatorkomplexes 14a bzw. die Produktion von R(-)-N-Acetylphenylalanin bei Verwendung von 14b. Die grossen äquatorialen Cyclooctylgruppen von 14a blockieren aber nicht nur die Quadranten 'unten links' und 'oben rechts' (Abb. 5), sondern schirmen zu einem gewissen Masse auch die noch verbleibenden zwei Quadranten 'oben links' und 'unten rechts' ab (Schema 2, Fussnote^{a)}), so dass sich bei dieser Betrachtungsweise die gegenüber 14b verringerte Enantioselektivität von 14a nahezu zwanglos ergibt. Auffallend ist noch die bei vollständigem Umsatz des Substrats durch 14b im Vergleich zur 14a-katalysierten Reaktion auf das Dreifache verlängerte Hydrierdauer. Folgt man einem Vorschlag von Nagel [16], so ist auch dies eine Konsequenz der im Komplex 14b vorliegenden axialen Ausrichtung der sperrigen Cyclooctylringe, da das im Zuge der geschwindigkeitsbestimmenden oxidativen Addition von H₂ an das Rhodiumatom durchlaufene sechsfach koordinierte Intermediat durch axial orientierte voluminöse Phosphorsubstituenten destabilisiert wird.

Die mit Abstand geringste optische Induktion von nur 6% wird bei Verwendung des Bis(phosporinan)-Liganden 7 im Komplex 12 beobachtet. Zwar ist auch in diesem Fall eine paarweise axiale und äquatoriale Ausrichtung der an die Phosphoratome von (1S,2S)- $C_5H_8(PC_5H_{10}$ -cyclo)₂ direkt gebundenen Methylenfragmente durch das starre Kohlenstoffgerüst prinzipiell vorgegeben, doch dürfte die Verknüpfung der P-Substituenten durch je drei weitere CH2-Glieder zu Sechsringen deren Einflussnahme auf die Koordinationssphäre des Rhodiumatoms weitgehend verwischen. Damit unterscheidet sich der Katalysatorkomplex 12 markant von entsprechenden Derivaten mit ethylenverbrückten Bis(phospholan)-Liganden wie z.B. $[C_{2}H_{4}{P(CH(C_{3}H_{7}-i)CH_{2})_{2}-cyclo}_{2}Rh(1,5-COD)]^{+}, bei$ denen eine effektive Blockierung der Koordinationsquadranten durch die in den 2,5-Positionen der Fünfringe fixierten Isopropylreste erreicht wird, so dass diese Komplexe ausgezeichnete Enantioselektivitäten bewirken [8].

Erstaunlich ist die trotz des geringen sterischen Anspruchs von *n*-Butylgruppen noch recht ausgeprägte optische Induktion von 43% *ee*, die mit Komplex **10** als Katalysator erzielt wurde. Beim Übergang zum 3-hydroxypropylsubstituierten Derivat **11** steigt die optische Ausbeute auf 55% *ee* weiter an; d.h., der Ersatz der terminalen CH₃-Reste von **10** durch OH-Gruppen in **11** verbessert die Enantioselektivität des Rh(I)-Katalysators. Es liegt nahe zu vermuten, dass über Wasserstoffbrücken vermittelte Wechselwirkungen der 3-Hydroxypropylsubstituenten von **11** mit dem koordinativ gebundenen C₆H₅CH=C(CO₂H)NHOAc-Molekül dafür verantwortlich sind (vgl. auch [17]).

Die mit dem cyclohexylsubstituierten Komplex 13 erreichten ee-Werte von 41% bei einem Verhältnis von Katalysator zu Substrat wie 1:75 bzw. von 38% bei einem Rh/>C=C<-Verhältnis von 1:1000 können nicht ohne weiteres der praktisch quantitativen optischen Ausbeute von 100 + 2% gegenübergestellt werden, über die Green et al. im Zusammenhang mit der von Rhodium(I)-Komplexen des perphenylierten (1S.2S)- $C_5H_8{P(C_6H_5)_2}_2$ -Liganden katalysierten Hydrierung N-acylierter Dehydrophenylalanin-Derivate berichteten [18,19], denn in der entsprechenden Literatur findet sich keinerlei Hinweis auf die Konfiguration der erhaltenen Produkte, und die Reaktionsbedingungen-6 h bei Rh/ >C=C<-Verhältnissen von 20:1(!) [19]—wurden gänzlich anders gewählt. Arbeiten, die darauf abheben, die Effizienz P-alkylierter und P-arylierter Cyclopentan-1,2-diyl-bisphosphane in der Rh(I)-katalysierten 'asymmetrischen' Hydrierung vergleichend zu bewerten, sind derzeit ebenso im Gange wie Untersuchungen zur Katalyse durch Rhodiumkomplexe mit (1R,2R)-C₅H₈(PR₂)₂-Liganden, welche zu den in dieser Mitteilung beschriebenen 1*S*,2*S*-konfigurierten Systemen enantiomer sind [20].

3. Experimenteller Teil

3.1. Arbeitstechnik und apparatives Instrumentarium

Alle Arbeiten unter Inertgas in getrockneten Lösemitteln. —IR-Spektren: Mattson Polaris. — NMR-Spektren: Bruker DPX 300 (300.1 MHz für ¹H, 75.5 MHz für ¹³C, 121.5 MHz für ³¹P); ¹H- und ³¹P-Verschiebungen relativ zu einem internen Si(CH₃)₄-Standard; Referenzierung der ³¹P{¹H}-Spektren gegen H₃PO₄ extern; Verschiebungen zu tiefem Feld mit positivem Vorzeichen; $\Sigma J(P,C)$ in AXX'-Teilspektren: |J(P,C) + J(P',C)|. —Massenspektren: Jeol MS 700. — Optische Drehwerte: Schmidt & Haensch POLAR-TRONIC E.

3.2. Synthesen der Liganden

Der Bis(phosphinigsäurechlorid)-Ligand (1*S*,2*S*)-C₅H₈{P(Cl)C₈H₁₅-*cyclo*} (4) wurde durch Chlorierung des bis(sekundären) Phosphans (1*S*,2*S*)-C₅H₈{P(H)-C₈H₁₅-*cyclo*} (3) mit Bis(trichlormethyl)carbonat erhalten, wie zuvor mitgeteilt [5,7]. Die Darstellung von (1*S*,2*S*)-C₅H₈{P(C₆H₁₁-*cyclo*)₂} (8) erfolgte aus (1*S*,2*S*)-C₅H₈(PCl₂) (2) durch Grignard-Substitution [5]—in Analogie zur Synthese des Racemats [21].— Ausb.: 69%.—¹H-NMR (C₆D₆): $\delta = 0.95-2.35$ (m; CH₂, CH).—³¹P{¹H}-NMR (CDCl₃): $\delta = 9.8$ (s).

3.2.1. $(1S,2S)-C_5H_8\{P(C_4H_9-n)_2\}_2$ (5)

Zu 8 ml einer 2.0 M Butylmagnesiumchlorid-Lösung in Diethylether, verdünnt mit weiteren 20 ml Diethylether, wurden 0.82 g (3.02 mmol) 2 [5] in 20 ml Diethylether getropft. Nach beendeter Zugabe liess man noch 1 h unter gelindem Rückfluss rühren und hydrolysierte anschliessend mit einer N2-gesättigten, wässrigen NH₄Cl-Lösung. Nach Verdünnen mit 25 ml Wasser wurde mit 3×25 ml Diethylether extrahiert. Die vereinigten Extrakte wurden über Natriumsulfat getrocknet und anschliessend im Vakuum von allen flüchtigen Bestandteilen befreit, wobei 5 als farbloses Öl verblieb.—Ausb.: 0.73 g (67%).—MS (FD; Benzol, 2 kV): m/z = 358 [M⁺].—¹H-NMR (C₆D₆): $\delta = 1.01$, 1.04 (je t, ${}^{3}J(H,H)$ je 7.1 Hz; je 6 H, CH₃), 1.4–2.2 (m; 32 H, CH₂, CH).—¹³C{¹H}-NMR (C₆D₆): $\delta = 14.10$, 14.11 (je s; je 2 CH₃), 24.94, 25.00, 25.13 (je m, je 2 Butyl-CH₂), 26.62 (AXX'-m, $\Sigma J(P,C) = 12.4$ Hz; 2 Butyl-CH₂), 27.08 (t, ${}^{3}J(P,C) = 3.0$ Hz; C₅H₈-C⁽⁴⁾H₂), 29.15, 29.19 (je m; je 2 Butyl-CH₂), 30.03 (AXX'-t, $\Sigma J(P,C) = 11.8$ Hz; $C_5H_8-C^{(3,5)}H_2$, 39.43 (AXX'-t, $\Sigma J(P,C) = 36.8 \text{ Hz; } C^{(1,2)}\text{H}).$ $-^{31}P\{^{1}\text{H}\}-\text{NMR} (C_6D_6):$ $\delta = -0.16$ (s).

3.2.2. $(1S,2S)-C_5H_8\{P(C_3H_6OH)_2\}_2$ (6)

Eine eisgekühlte Lösung von 0.2 g Azo-2,2'-bis-(isobutyronitril) in 20 ml Allylalkohol wurde in drei Portionen, verteilt über 1.5 h, zu einer auf 60°C erwärmten Mischung aus 1.98 g (14.76 mmol) (1S,2S)- $C_5H_8(PH_2)_2$ (1) [4] und 10 ml Allylalkohol gegeben. Nach beendeter Zugabe rührte man das Reaktionsgemisch noch 10 h bei 60°C. Anschliessend wurden alle flüchtigen Bestandteile durch Vakuumdestillation entfernt und das als hellgelbes Öl erhaltene Produkt zur weiteren Reinigung zunächst mit Wasser, dann mehrere Male mit Diethylether gewaschen.—Ausb.: 2.58 g (47%).—MS (FD; H₂O, 10 kV): m/z = 367 [M⁺].—IR (Film): v = 1017, 1057 (CO), 3200–3400 (OH) cm⁻¹. ¹H-NMR (D₂O): $\delta = 0.8-2.5$ (m; 24 H, CH₂, CH), 3.55, 3.56 (je t, ${}^{3}J(H,H)$ je 6.4 Hz; je 4 H, CH₂OH); OH wegen H/D-Austausch nicht beobachtet.— $^{13}C{^{1}H}$ -NMR (D₂O; chemische Verschiebungen aus dem ¹³C{³¹P, ¹H}-NMR-Spektrum): $\delta = 19.41$ (AXX'-dd, $\Sigma J(P,C) = 9.4$ Hz; 2 PCH₂), 21.12 (AXX'-dd, $\Sigma J(P,C) = 5.8$ Hz; 2 PCH₂), 26.45 (t, ${}^{3}J(P,C) = 3.6$ Hz; C_5H_8 -C⁽⁴⁾H₂), 28.55, 28.80 (je AXX'-t, $\Sigma J(P,C)$ je 12.3 Hz; je 2 PCH₂CH₂), 29.35 (AXX'-t, $\Sigma J(P,C) = 9.4$ Hz; C_5H_8 - $C^{(3,5)}H_2$), 37.93 (*AXX'*-dd, $\Sigma J(P,C) = 36.3$ Hz; $C^{(1,2)}H$), 62.93, 63.01 (je AXX'-t, $\Sigma J(P,C)$ je 12.4 Hz; je 2 CH₂OH).—³¹P{¹H}-NMR (D₂O): $\delta = -16.0$ (s).

3.2.3. $(1S,2S)-C_5H_8(PC_5H_{10}-cyclo)_2$ (7)

Eine lebhaft gerührte Lösung von 3.0 ml (29.1 mmol) 1,4-Pentadien in 100 ml Diethylether wurde unter externer UV-Bestrahlung (Philips HPK 125 W; Duran-Filter) mit 1.03 g (7.68 mmol) 1, gelöst in 30 ml Diethylether, versetzt. Nach beendeter Zugabe wurde die Photolyse noch 48 h bei Raumtemperatur fortgesetzt. Anschliessend wurden das Lösungsmittel sowie überschüssiges 1,4-Pentadien abgezogen und der ölige Rückstand bei 130°C im Ölpumpenvakuum von unumgesetzt verbliebenem 1 befreit.—Ausb.: 0.82 g (39%).—MS (FD; Toluol, 2 kV): m/z = 270 [M⁺].— ¹H-NMR (C₆D₆): $\delta = 0.9-2.1$ (m; CH₂, CH).— ¹³C{¹H}-NMR (C₆D₆): $\delta = 24.41$, 25.51 (je AXX'-m, $\Sigma J(P,C) = 15.0, 12.8 \text{ Hz}; C_5 H_{10} - C^{(2,6)} H_2), 24.60 (AXX' - C^{(2,6)} H_2)$ m, $\Sigma J(P,C) = 5.5$ Hz; $C_5 H_{10} - C^{(3,5)} H_2$), 26.40 (t, ${}^{3}J(P,C) = 4.1 \text{ Hz}; C_{5}H_{8}-C^{(4)}H_{2}), 28.50 \text{ (s; } C_{5}H_{10}-C^{(4)}H_{2}),$ 29.65 (AXX'-m, $\Sigma J(P,C) = 14.8$ Hz; $C_5H_8-C^{(3,5)}H_2$); 40.66 (*A*XX'-t, $\Sigma J(P,C) = 36.7$ Hz; $C^{(1,2)}H$).—³¹P{¹H}-NMR (C₆D₆): $\delta = -29.0$ (s).

3.2.4. $(1S,2S)-C_5H_8\{P(CH_3)C_8H_{15}-cyclo\}_2$ (9)

(I) aus (1S,2S)-C₅H₈{P(H)C₈H₁₅-*cyclo*}₂ (**3**) durch Metallierung und Alkylierung: Dieses Verfahren, welches **9** als Diastereomerengemisch mit den P-Konfigurationen $S_P, S_{P'}$, **9a** (72%), $R_P, R_{P'}$, **9b** (4%), und $R_P, S_{P'}$, **9c** (24%), liefert, wurde bereits beschrieben [6].

(II) aus $(1S,2S)-C_5H_8{P(Cl)C_8H_{15}-cyclo}_2$ (4) [7] durch Grignard-Reaktion: Die Darstellung erfolgte

analog zur Synthese von **5** aus 0.55 g (1.30 mmol) **4** und 3.5 ml einer 1.0 M Methylmagnesiumbromid-Lösung in Di-*n*-butylether, verdünnt mit 20 ml Diethylether.— Ausb: 0.45 g (90%).—Diastereomerenverteilung: $S_{\rm P}, S_{\rm P'}$, **9a** (4%), $R_{\rm P}, R_{\rm P'}$, **9b** (61%), und $R_{\rm P}, S_{\rm P'}$, **9c** (35%).— Spektroskopische Daten wie in [6] angegeben.

3.3. Synthesen der Komplexe

Der als Ausgangsverbindung benötigte Komplex $[Rh(1,5-COD)_2]O_3SCF_3$ wurde nach leicht modifizierten Literaturvorschriften [8,22,23] erhalten.

3.3.1. $[(1S,2S)-C_5H_8\{P(C_4H_9-n)_2\}_2Rh(1,5-COD)]-O_3SCF_3$ (10)

Eine Lösung von 0.54 g (1.15 mmol) [Rh(1,5-COD)₂]O₃SCF₃ in 10 ml THF wurde unter Rühren tropfenweise mit einer Lösung von 0.43 g (1.20 mmol) 5 in 20 ml THF versetzt. Danach liess man noch 20 min bei Raumtemperatur rühren und engte schliesslich auf 5 ml ein. Bei tropfenweiser Zugabe des gleichen Volumens Diethylether fiel das Produkt als oranges Pulver aus, welches zweimal mit je 10 ml Diethylether gewaschen und im Vakuum getrocknet wurde.-Ausb.: 0.60 g (73%).—Anal. Gef. C, 50.40; H, 8.28; S, 4.15. C₃₀H₅₆F₃O₃P₂RhS (718.66) ber. C, 50.14; H, 7.85; S, 4.46%.—MS (FD; Aceton, 2 kV): $m/z = 570 [M_{Kat.}^+]$.— IR (KBr): v = 1030 (SO₃, v_s), 1145 (CF₃, v_{as}), 1224 (CF_3, v_s) , 1267 (SO_3, v_{as}) cm⁻¹ (Zuordnung: [24]).— ¹H-NMR (Aceton- d_6): $\delta = 0.94$, 0.98 (je t, ³J(H,H) je 7.2 Hz; je 6 H, CH₃), 1.4-2.7 (m; 40 H, CH₂, C₅H₈-CH), 5.16 (m; 4 H, COD-CH). $-^{13}C{^{31}P,^{1}H}$ -NMR (Aceton- d_6): $\delta = 13.37$ (CH₃), 21.97, 23.90, 24.42, 24.83, 25.03, 27.42, 29.80, 30.43, 30.96 (je CH₂), 47.40 (C₅H₈-CH), 95.81 (${}^{1}J(\text{Rh},\text{C}) = 6.9 \text{ Hz}$), 98.33 (${}^{1}J(\text{Rh},\text{C}) = 7.4$ Hz) (je COD-CH); C₅H₈-CH-Signal ohne ³¹P-Entkopplung: AXX'-t mit $\Sigma J(P,C) = 48.0$ Hz; CF₃SO₃-Resonanz nicht beobachtet.—³¹P{¹H}-NMR (Aceton- d_6): $\delta = 24.63$ (d, ${}^{1}J(Rh,P) = 144.9$ Hz).

3.3.2. $[(1S,2S)-C_5H_8\{P(C_3H_6OH)_2\}_2Rh(1,5-COD)]-O_3SCF_3$ (11)

Die Darstellung erfolgte wie zuvor beschrieben aus 0.15 g (0.32 mmol) [Rh(1,5-COD)₂]O₃SCF₃ und 0.13 g (0.35 mmol) **6** in 50 ml Ethanol. Der Komplex wurde als rotes Öl isoliert, welches nach gründlichem Ausrühren mit Diethylether spektroskopisch rein war.— Ausb.: 0.10 g (43%).—MS (FD; Aceton, 2 kV): m/z = 578 [M⁺_{Kat.}].—IR (KBr): v = 1051 (CO und SO₃, v_s), 1164 (CF₃, v_{as}), 1279 (SO₃, v_{as}), 3200–3600 (OH) cm⁻¹.—¹H-NMR (Aceton- d_6): $\delta = 1.6-2.6$ (m; 30 H, CH₂), 2.61 (m; 2 H, C₅H₈–CH), 3.55–3.90 (m; 8 H, CH₂OH), 5.59 (m; 4 H, COD–CH); OH wegen H/D-Austausch nicht beobachtet.—¹³C{³¹P,¹H}-NMR (Aceton; DEPT-Pulsfolge): $\delta = 21.62$, 22.63, 22.95, 29.34, 30.50, 31.49, 32.08 (je CH₂), 48.43 (C₅H₈-CH), 62.84, 63.21 (je CH₂OH), 97.17 (${}^{1}J(Rh,C) = 6.7$ Hz), 99.82 $({}^{1}J(Rh,C) = 7.2 \text{ Hz})$ (je COD-CH); im konventionellen ¹³C{¹H}-NMR-Spektrum wurden für folgende Resoscheinbar einfache AXX'-Aufspaltungen nanzen beobachtet: $\delta = 21.62$ ($\Sigma J(P,C) = 23.7$ Hz), 22.63 $(\Sigma J(P,C) = 12.6 \text{ Hz}), 22.95 (\Sigma J(P,C) = 11.5 \text{ Hz}), 48.43$ $(\Sigma J(P,C) = 47.9 \text{ Hz}), 62.84 (\Sigma J(P,C) = 13.5 \text{ Hz}), 63.21$ $(\Sigma J(P,C) = 14.6)$ Hz); $\delta(CF_3SO_3) = 122.13$ (q, ${}^{1}J(F,C) = 321.2 \text{ Hz}$. $-{}^{31}P{}^{1}H{}-NMR$ (Aceton- d_{6}): $\delta =$ 24.92 (d, ${}^{1}J(Rh,P) = 145.1$ Hz).

3.3.3. [(1S,2S)-C₅H₈(PC₅H₁₀-cyclo)₂Rh(1,5-COD)]-O₃SCF₃ (**12**)

Die Verbindung wurde in Analogie zu **10** und **11** aus 0.20 g (0.43 mmol) [Rh(1,5-COD)₂]O₃SCF₃ und 0.13 g (0.48 mmol) **7** in 30 ml THF als rotes Öl erhalten.— Ausb.: 0.12 g (44%).—MS (FD; Aceton, 2 kV): m/z = 481 [M⁺_{Kat}].—IR (KBr): v = 1032 (SO₃, v_s), 1149 (CF₃, v_{as}), 1223 (CF₃, v_s), 1269 (SO₃, v_{as}) cm⁻¹.—¹H-NMR (Aceton- d_6): $\delta = 1.2-3.0$ (m, 36 H, CH₂, C₅H₈-CH), 5.11, 5.23 (je m; je 2 H, COD-CH).—¹³C{³¹P,¹H}-NMR (Aceton- d_6): $\delta = 18.98$, 22.93, 23.21, 23.81, 25.56, 25.84, 30.22, 30.27 (je CH₂), 48.76 (C₅H₈-CH), 95.28 (d, ¹*J*(Rh,C) = 6.8 Hz), 98.71 (d, ¹*J*(Rh,C) = 7.5 Hz) (je COD-CH), 122.20 (q, ¹*J*(F,C) = 322.2 Hz; CF₃SO₃); C₅H₈-CH-Signal ohne ³¹P-Entkopplung: *A*XX'-t mit ΣJ (P,C) = 46.6 Hz.—³¹P{¹H}-NMR (Aceton- d_6): $\delta =$ 8.40 (d, ¹*J*(Rh,P) = 143.5 Hz).

3.3.4. $[(1S,2S)-C_5H_8{P(C_6H_{11}-cyclo)_2}_2Rh(1,5-COD)]-O_3SCF_3$ (13)

Die Darstellung entspricht dem für die vorstehenden Komplexe skizzierten Verfahren.—Ansatz: 0.09 g (0.19 mmol) [Rh(1,5-COD)₂]O₃SCF₃ und 0.10 g (0.22 mmol) 8 in 30 mL THF.—Ausb.: 0.11 g (70%) 13 als oranges Pulver.—Anal. Gef. C, 55.75; H, 8.24; S, 3.51. C₃₈H₆₄F₃O₃P₂RhS (822.80) ber. C, 55.47; H, 7.84; S, 3.90%.—MS (FD; Aceton, 2 kV): $m/z = 674 [M_{Kat}^+]$.— IR (KBr): v = 1031 (SO₃, v_s), 1143 (CF₃, v_{as}), 1222 (CF_3, v_s) , 1270 (SO_3, v_{as}) cm⁻¹.—¹H-NMR (Aceton d_6): $\delta = 1.1-2.8$ (m; 60 H, CH₂, C₅H₈-CH, C₆H₁₁-CH), 5.04, 5.87 (je m; je H, 2 COD-CH).—¹³C{³¹P,¹H}-NMR (CD₂Cl₂): $\delta = 24.65$, 26.12, 26.57, 26.71, 27.14, 27.41, 27.64, 27.95, 29.23, 29.85, 30.16, 31.73, 31.95, 32.00 (je CH₂), 32.90, 36.60 C_6H_{11} -CH), 48.69 (C_5H_8 -CH), 91.96 (d. (je ${}^{1}J(Rh,C) = 6.7$ Hz), 97.89 (d, ${}^{1}J(Rh,C) = 8.1$ Hz) (je COD-CH); ohne ³¹P-Entkopplung wurden für folgende Signale scheinbar einfache AXX'-Aufspaltungen beobachtet: $\delta = 32.90$ ($\Sigma J(P,C) = 17.2$ Hz), 36.60 $(\Sigma J(P,C) = 23.2 \text{ Hz}), 48.69 (\Sigma J(P,C) = 43.1 \text{ Hz});$ CF_3SO_3 -Resonanz nicht beobachtet.—³¹P{¹H}-NMR (Aceton- d_6): $\delta = 34.40$ (d, ${}^{1}J(Rh,P) = 143.8$ Hz).

3.3.5. $[(1S,2S)-C_5H_8{P(CH_3)(C_8H_{15}-cyclo)-(R)}_2Rh(1,5-COD)]O_3SCF_3$ (14a)

Die Lösung von 0.26 g (0.68 mmol) des nach 3.2.4, Verfahren (I), erhaltenen Diastereomerengemischs 9a-c in 15 ml THF wurde langsam zu einer gerührten Lösung von 0.31 g (0.66 mmol) [Rh(1,5-COD)₂]O₃SCF₃ in 20 ml THF getropft. Ein nach 20 min Rühren bei Raumtemperatur aufgenommenes ³¹P-NMR-Spektrum (CDCl₃) zeigte die Gegenwart folgender Komplexisomere in der Reaktionslösung an: 14a $[R_{\rm P}, R_{\rm P'}]$ (58%); $\delta = 30.30$ (d, ¹*J*(Rh,P) = 144.5 Hz)], **14b** [*S*_P,*S*_{P'} (11%); $\delta = 28.95$ (d, ¹J(Rh,P) = 146.1 Hz)] sowie 14c [$R_{\rm P}, S_{\rm P'}$ (31%); $\delta = 32.14$, 28.45 (*ABX-m*, ¹*J*(Rh,P_A) = 145.2, ${}^{1}J(\text{Rh},\text{P}_{\text{B}}) = 144.6$, ${}^{(2+3)}J(\text{P}_{\text{A}},\text{P}_{\text{B}}) = 29.9$ Hz)]. Es wurde dann, wie unter 3.3.1 beschrieben, eingeengt und mit Diethylether verdünnt, wobei sich 14a diastereomerenrein als oranges Pulver aus der Lösung abschied.—Ausb.: 0.18 g (37%).—Anal. Gef. C, 51.81; H, 7.91; S, 4.16. C₃₂H₅₆F₃O₃P₂RhS (742.68) ber. C, 51.75; H, 7.60; S, 4.32%.-MS (FD; Aceton, 2 kV): $m/z = 594 \ [M_{Kat}^+]$.—IR (KBr): $v = 1029 \ (SO_3, v_s)$, 1146 $(CF_3, v_{as}), 1224 (CF_3, v_s), 1268 (SO_3, v_{as}) \text{ cm}^{-1}.$ - ¹H-NMR (Aceton- d_6): $\delta = 1.3-2.7$ (m; 52 H, CH₃, CH₂, C₅H₈-CH, C₈H₁₅-CH), 4.93, 5.47 (je m; je 2 H, COD-CH).—¹³C $\{^{31}P, ^{1}H\}$ -NMR (Aceton- d_6 ; DEPT-Pulsfolge): $\delta = 4.40$ (CH₃), 22.54, 25.72, 25.94, 26.94, 27.03, 28.01, 28.99, 30.70, 31.35, 32.45 (je CH₂), 34.72 $(C_8H_{15}-CH)$, 43.50 (C_5H_8-CH) , 95.44 $(d, {}^{1}J(Rh,C) =$ 7.0 Hz); 97.51 (d, ${}^{1}J(Rh,C) = 7.0$ Hz) (je COD-CH); im konventionellen ${}^{13}C{}^{1}H$ -NMR-Spektrum ergaben sich für folgende Resonanzen scheinbar einfache *A*XX'-Aufspaltungen: $\delta = 4.40$ $(\Sigma J(P,C) = 20.2$ Hz), 34.72 ($\Sigma J(P,C) = 23.7$ Hz), 43.50 ($\Sigma J(P,C) =$ 46.7 Hz); CF₃SO₃-Signal nicht beobachtet.—³¹P-{¹H}-NMR (Aceton- d_6): $\delta = 30.83$ (d, ¹J(Rh,P) = 145.0 Hz).

3.3.6. $[(1S,2S)-C_5H_8{P(CH_3)(C_8H_{15}-cyclo)-(S)}_2Rh-(1,5-COD)]O_3SCF_3$ (14b)

Man liess eine Lösung von 0.23 g (0.60 mmol) des 3.2.4, Methode II, erhaltenen Dianach stereomerengemischs 9a-c in 15 ml THF langsam zu einer Lösung von 0.26 g (0.56 mmol) [Rh(1,5-COD)₂]O₃SCF₃ in 15 ml THF tropfen. Nach 20 min Rühren bei Raumtemperatur wurde zunächst wie vorstehend beschrieben aufgearbeitet, wobei die Zugabe von Diethylether aber zur Abscheidung des Isomerengemischs 14a-c in Form eines roten Öls führte, welches nach Waschen mit Diethylether im Vakuum getrocknet wurde.—Ausb.: 0.35 g (mmol, 84%); Diastereomerenverteilung (³¹P-NMR-spektroskopisch in Aceton- d_6): 14a/14b/14c = 5:62:33.—Das nicht C_2 symmetrische Diastereomer 14c wurde durch Säulenchromatographie abgetrennt: Dazu wurden auf eine mit Florisil beschickte und mit Aceton gewaschene Säule (l = 11 cm, d = 1.5 cm) 0.35 g des Diastereomerengemischs aufgetragen. Beim Chromatographieren mit insgesamt 100 ml Aceton verblieb **14c** auf der Säule, während die beiden C_2 -symmetrischen Diastereomere **14a** und **14b** eluiert, im Eluat aber nur bis zu einer Anreicherung von **14b** auf 92% (³¹P-NMR-spektroskopisch in Aceton- d_6) voneinander separiert werden konnten.

3.4. Röntgenstrukturanalysen der Komplexe 10, 13 und 14a

Orange Kristallblöcke der Abmessungen $0.55 \times$ $0.35 \times 0.18 \text{ mm}$ (10), $0.63 \times 0.53 \times 0.43 \text{ mm}$ (13) und $0.65 \times 0.53 \times 0.45$ mm (14a) aus THF/Diethylether.— Enraf-Nonius CAD-4 ($20 \pm 2^{\circ}$ C); Mo-K_{α}-Strahlung $(\lambda = 0.7107 \text{ Å})$.—Lösung der Strukturen durch Direktmethoden (SIR 92 [25]); Verfeinerung der Strukturmodelle nach Vollmatrix-LSQ-Verfahren mit anisotropen Auslenkungsparametern für alle Nicht-H-Atome: H-Atome stets in geometrisch idealisierten $\Sigma w (F_0^2 - F_c^2)^2$ Positionen; minimierte Funktion: mit $w = 1/\{\sigma^2(F_o^2) + [a(F_o^2 + 2F_c^2)/3]^2 + b(F_o^2 + 2F_c^2)/3\}$ (SHELXL 93 bzw. SHELXL 97 [26]).—10: $M_r = 718.66$ $(C_{30}H_{56}F_3O_3P_2RhS)$; monoklin $P2_1$; a = 9.658(1) Å, b = 18.4844(9) Å, c = 20.298(1) Å, $\beta = 90.459(8)^{\circ}$, V = 3623.5(5) Å³; Z = 4, $D_c = 1.317$ g cm⁻³; μ (Mo- K_{α} = 0.659 mm⁻¹. ω -Abtastung (5° $\leq 2\theta \leq 52^{\circ}$; - $11 \le h \le 11$, $0 \le k \le 22$, $0 \le l \le 25$ und zugehörige Friedel-Paare); 14177 unabhängige Reflexe; Gütefaktoren: $wR_2 = 0.1382$ für alle Daten, $R_1 = 0.0521$ für 10427 $|F_{o}| > 4\sigma |F_{o}|$ bei 722 verfeinerten Parametern; absoluter Strukturparameter [27]: -0.04(3). -13: $M_{\rm r} = 822.80$ (C₃₈H₆₄F₃O₃P₂RhS); monoklin P2₁; a =14.794(4) Å, b = 18.685(4) Å, c = 14.907(3) Å, $\beta =$ 91.97(2)°, V = 4118(2) Å³; Z = 4, $D_c = 1.327$ g cm⁻³; μ (Mo-K_{α}) = 0.590 mm⁻¹. ω -Abtastung (5° $\leq 2\theta \leq$ 54°; $-18 \le h \le 18$, $0 \le k \le 23$, $0 \le l \le 19$ und zugehörige Friedel-Paare); 17739 unabhängige Reflexe; Gütefaktoren: $wR_2 = 0.1922$ für alle Daten, $R_1 =$ 0.0694 für 13957 $|F_o| > 4\sigma |F_o|$ bei 865 verfeinerten Parametern; absoluter Strukturparameter: 0.03(4).-14a: $M_r = 742.68$ (C₃₂H₅₆F₃O₃P₂RhS); monoklin P2₁; a = 10.243(2) Å, b = 16.558(2) Å, c = 10.5859(7) Å, $\beta = 98.576(9)^{\circ}$, V = 1775.3(4) Å³; Z = 2, $D_{c} = 1.389$ g cm⁻³; μ (Mo-K_{α}) = 0.676 mm⁻¹. ω -Abtastung (5° \leq $2\theta \le 60^{\circ}; \ 0 \le h \le 14, \ 0 \le k \le 23, \ -14 \le l \le 14$ und zugehörige Friedel-Paare); 10266 unabhängige Reflexe; Gütefaktoren: $wR_2 = 0.1113$ für alle Daten, $R_1 =$ 0.0413 für 7929 $|F_o| > 4\sigma |F_o|$ bei 399 verfeinerten absoluter Strukturparameter: Parametern; 0.02(3).—Ergebnisse in Abb. 1-3.—Weitere Einzelheiten zu den Kristallstrukturuntersuchungen sind unter den Hinterlegungsnummern CCDC 115101 (10),

CCDC 115099 (13) und CCDC 115100 (14a) beim Cambridge Crystallographic Data Centre archiviert und können von dort angefordert werden über: The Director, CCDC, 12 Union Road, Cambridge CB2 1 EZ, UK (fax: +44-1223-336033; e-mail: teched@ chemcrys.cam.ac.uk).

3.5. Durchführung der Hydrierungen von α-Acetamidozimtsäure

Alle Hydrierungen wurden in einem an eine Hempel'sche Gasbürette angeschlossenen Reaktionskolben bei Raumtemperatur unter einem H2-Druck von etwa 1.1 bar durchgeführt. Für die Hydrierreaktionen wurden die Katalysatorkomplexe bei dem üblicherweise gewählten Rhodium/Substrat-Verhältnis 1:75 in Stoffmengen zwischen 12.8 und 111.3 µmol (bei Rh/>C=C < = 1:1000 in einer Stoffmenge von 2.1 µmol) neben dem erforderlichen Überschuss des Dehydrophenylalanin-Derivats unter Argon in Substanz vorgelegt. Nach Verdrängen der Schutzgasatdurch Spülen der mosphäre Apparatur mit Wasserstoff und Zuspritzen des Lösemittels Ethanol (10 ml) erfolgten die Hydrierungen unter lebhaftem Rühren der Reaktionslösungen bis zum Stillstand der Bei der Aufeinanderfolge zweier H₂-Aufnahme. Katalysen mit dem Komplex 14a wurde nach abgeschlossener erster Hydrierung nochmals die gleiche Menge an α-Acetamidozimtsäure, gelöst in Ethanol, zugegeben.

Nach erfolgter Wasserstoffaufnahme durch das Substrat wurden die Lösungen mit 1 ml 0.1 M HCl versetzt, anschliessend im Vakuum bis zur Trockne eingeengt und die verbleibenden Rückstände in 10 ml 1 M NaOH aufgenommen. Es folgte jeweils eine mehrfache Extraktion, zunächst mit 3×10 ml Methylenchlorid, danach mit 3×10 ml Diethylether. Nach Ansäuern der so gereinigten wässrigen Phase mit konzentrierter Salzsäure wurde mit 3 × 15 ml Essigsäureethylester extrahiert [28]. Durch Eindampfen der organischen Phase und Digerieren des Rückstands mit Diethylether erhielt man die Hydrierprodukte als Trifluoressigsäure farblose Pulver, deren in aufgenommene ¹H-NMR-Spektren einen durchweg quantitativen Verlauf der Reaktionen zu erkennen gaben (vgl. [1]).

Die erzielten optischen Induktionen wurden polarimetrisch an Lösungen in Ethanol (c = 5-15 g pro 100 ml) bei der Natrium-D-Linie gemessen und beziehen sich auf die in der Literatur [29-31] für die reinen Enantiomere von N-Acetylphenylalanin angegebene und hier reproduzierte spezifische Drehung [α]_D = ± 46.8 (± 0.5) (c = 1, Ethanol).

Anerkennung

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft (Bonn), vom Fonds der Chemischen Industrie (Frankfurt/Main), von der Firma Degussa (Hanau) sowie von der Hoechst AG (Werk Vlissingen/NL) in grosszügiger Weise unterstützt.

Literatur

- [1] L. Dahlenburg, C. Eckert, J. Organomet. Chem. 564 (1998) 227.
- [2] K. Tani, K. Suwa, E. Tanigawa, I. Tomokazu, Y Tsuneaki, Y. Tatsuno, S. Otsuka, J. Organomet. Chem. 370 (1989) 203.
- [3] A. Miyashita, H. Karino, J.-I. Shimamura, T. Chiba, K. Nagano, H. Nohira, H. Takaya, Chem. Lett. (1989) 1849.
- [4] C. Eckert, L. Dahlenburg, A. Wolski, Z. Naturforsch. Teil B 50 (1995) 1004.
- [5] L. Dahlenburg, A. Kaunert, Eur. J. Inorg. Chem. (1998) 885.
- [6] L. Dahlenburg, V. Kurth, Eur. J. Inorg. Chem. (1998) 597.
- [7] L. Dahlenburg, Ger. Offen. DE 197 32 805 A 1, 1997-1999.
- [8] M.J. Burk, J.E. Feaster, W.A. Nugent, R.L. Harlow, J. Am. Chem. Soc. 115 (1993) 10125.
- [9] R.G. Ball, N.C. Payne, Inorg. Chem. 16 (1977) 1187.
- [10] E.P. Kyba, R.E. Davis, P.N. Juri, K.R. Shirley, Inorg. Chem. 20 (1981) 3616.
- [11] K. Toriumi, T. Ito, H. Takaya, T. Souchi, R. Noyori, Acta Crystallogr. B 32 (1982) 807.
- [12] J.M. Brown, P.A. Chaloner, Asymmetric Hydrogenation Reactions Using Chiral Diphosphine Complexes of Rhodium, in: .H.

Pignolet (Ed.), Homogeneous Catalysis with Metal Phosphine Complexes, Plenum, New York, 1983.

- [13] S. Masamune, W. Choy, J.S. Peterson, L.R. Sita, Angew. Chem. 97 (58) 1; Angew. Chem. Int. Ed. Engl. 24 (1985) 1.
- [14] K. Burgess, M.J. Ohlmeyer, K.H. Whitmire, Organometallics 11 (1992) 3588.
- [15] W.S. Knowles, Acc. Chem Res. 16 (1983) 106.
- [16] U. Nagel, B. Rieger, Organometallics 8 (1989) 1534.
- [17] J. Holz, A. Börner, A. Kless, S. Borns, S. Trinkhaus, R. Selke, D. Heller, Tetrahedron: Asymmetry 8 (1995) 1973.
- [18] D.L. Allen, V.C. Gibson, M.L.H. Green, J.F. Skinner, J. Bashkin, P.D. Grebenik, J. Chem. Soc. Chem. Commun. (1983) 895.
- [19] M.L.H. Green (British Petroleum), Eur. Pat. Appl. E.P. 117.158, 1983–1984; Chem. Abstr. 102 (1985) No. 6.809.
- [20] N. Osthoff, Diplomarbeit und Arbeiten zur Dissertation, Universität Erlangen-Nürnberg, seit 1998.
- [21] A. Saare, L. Dahlenburg, Z. Naturforsch. Teil B 50 (1995) 1009.
- [22] R.R. Schrock, J.A. Osborn, J. Am. Chem. Soc. 93 (1971) 3089.
- [23] T.G. Schenck, J.M. Downes, C.R.C. Milne, P.B. Mackenzie, H. Boucher, J. Whelan, B. Bosnich, Inorg. Chem. 24 (1985) 2334.
- [24] A.R. Byington, W.E. Bull, Inorg. Chim. Acta 21 (1977) 239.
- [25] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, SIR 92. Program package for Solving Crystal Structures by Direct Methods; Bari, Perugia, Rom (1992).
- [26] G.M. Sheldrick, SHELXL 93/97. Programs for the Refinement of Crystal Structures; Universität Göttingen (1993/1997).
- [27] H.D. Flack, Acta Crystallogr. A 39 (1983) 876.
- [28] U. Nagel, A. Bublewitz, Chem. Ber. 125 (1992) 1061.
- [29] W.S. Knowles, M.J. Sabacky, B.D. Vineyard, D.J. Weinkauff, J. Am. Chem. Soc. 97 (1975) 2567.
- [30] G. Gelbard, H.B. Kagan, R. Stern, Tetrahedron 32 (1976) 233.
- [31] T.B. Dang, J.-C. Poulin, H.B. Kagan, J. Organomet. Chem. 91 (1975) 105.